

Connecting to the EHR
with Application

Programming Interfaces
(APIs)

A guide for Innovators at UCSF and beyond

June 2017

Prepared by the UCSF Digital Diagnostics & Therapeutics (DD&T)
Committee

Contents
Introduction ... Error! Bookmark not defined.

What are APIs? .. 4

Sounds great! How do I get this data? .. 4

The Path to Development and Production ... 6

Part 1: Thinking of an idea and testing it .. 7

Propose an idea .. 7

Run the idea by an Informaticist ... 7

Complete DD&T committee intake form. ... 7

Digital Diagnostics and Therapeutics (DD&T) Committee (1st) ... 7

How do we decide whether you get to connect? ... 8

Business Associates’ Agreement (BAA) & Contract .. 8

Security Review ... 9

Special circumstances: ... Error! Bookmark not defined.

Committee on Human Research (CHR) .. Error! Bookmark not defined.

Care Technology Governance Committee (CTG) ... Error! Bookmark not defined.

ACE6 Access & the Developer “Package” .. Error! Bookmark not defined.

Part 2: Getting your tools used for clinical care at UCSF Health ... 10

Why two separate steps and why are the requirements different? .. 10

Full Risk Assessment ... 10

Code Review (& Links within EHR) .. 10

Launch From within EHR ... 11

DD&T second review ... 11

POC/TST (EHR “proof of concept” and “test” environments) .. 12

CAB, Production Deployment ... 12

Post-Deployment Review .. 12

Developer Pitfalls .. 13

Other Considerations .. 14

The ITA and Intellectual Property ... 14

Privacy, Regulatory, and Risk Management considerations ... 14

Privacy Considerations .. 14

Accessing sensitive patient’s data ... 15

Compliance/Regulatory Considerations ... 15

Risk Management Considerations .. 15

Developer “Package” Contents .. Error! Bookmark not defined.

Fees and Level of Service .. 16

Glossary ... 17

Who can benefit from EHR API access?
Have you ever thought “I could write an application that provides personalized clinical advice…

if only I could get three pieces of data from our Electronic Health Record (EHR) about a

patient—say, her age, weight, and creatinine level?” EHRs like the one at UCSF have gotten

better at making data like this available to facilitate app creation. We want to help you tap into

these possibilities so you can build innovative digital solutions as quickly and easily as possible.

There are many types of people who can benefit from learning how to access UCSF’s APIs:

- A clinical researcher developing a decision-support application for physicians

- A UCSF faculty doing a QI project creating a custom dashboard for your clinic

- A trainee creating a clinical calculator

- A UCSF faculty looking to solve a clinical problem by working with a commercial

software company and looking to integrate the tool with our EHR

What are APIs?
Application Programming Interfaces (APIs) are a way to move data out of or into a given

program using a standard programming language. For example, if you want to know a

patient’s date of birth in a given EHR, you could find it manually by using the MRN to retrieve

the patient record and then looking through the chart for the date of birth, or you could find it

by using a software program that directly retrieves the date of birth from the EHR. The

problem with the former is it is slow and not useful if you want to keep two programs in sync,

and the problem with the latter is that you need to know a lot about the EHR and how it is

structured (e.g. relational vs. hierarchical; which indices exist; and how are the tables laid out

and named). If instead the EHR published an API, that API can be called by any software

program without needing detailed knowledge of the underlying data structure and without

the developer needing help from the EHR team to set up a custom “data dump” or other

lengthy process.

Imagine developing a custom diabetes dashboard that includes last A1c value, date of last

retinal exam, and last note from Endocrinology pulled straight from the EHR, and which could

even be combined with BG meter values — and you get a feel for how powerful such data

integrations can be.

What API’s are Not
The EHR API’s discussed in this document are useful for interacting with specific records in

Apex in real time. Typically, it’s used for small sets of data, such as a patient’s latest lab results

or a physician’s current patient list. It is not particularly useful for retrieving large sets of data,

e.g. all patients seen at UCSF Cardiology in the last 10 years.

If you do not need the most up-to-date data and/or need large amounts of EHR data, consider

alternative data sources, such as the Epic Clarity database, Caboodle (Epic data warehouse,

formerly known as Cogito). Please refer to data.ucsf.edu for these data sources.

The EHR API’s are for data exchange on demand versus being event driven. For example, if

you need to know when a patient has been admitted, an API isn’t useful for determining that

(You’d have to poll the EHR and ask it every few minutes if the patient has been admitted. It’s

doable, but not practical). Instead, you’ll want to use a traditional HL7 interface, e.g. the ADT

interface, which sends outbound messages to subscribed recipients regarding which patients

have been admitted, discharged, or transferred. Once the message that a patient has been

admitted has been received, an API could then be used to query further details about that

patient. For more information on HL7 interfaces, please contact the Clinical Systems

Integration Team.

Sounds great! How do I get this data using API’s?
Glad you’re interested! The process is described in greater detail below.

While APIs can be very powerful, there are several potential risks involved, including:

- Exposing protected health information (PHI)

- APIs breaking without warning

- External applications not working as intended

- External applications slowing down the EHR for everybody

Typically, a developer wanting their app to connect to UCSF’s EHR APIs would have to obtain

approvals from many different stakeholders across UCSF, a process we know can be lengthy,

confusing, and inefficient.

The DD&T consolidates this approval process and guides you through to save you time and

confusion.

After reading through this guidance, when you are ready to request API access, please

complete this intake form. A PDF version of the intake form is available here for you to

preview.

Ready to begin? Great—keep reading.

https://redcap.ucsf.edu/surveys/?s=F8YFHD3NDH
https://ucsf.box.com/s/j3c7bgacmbak141d38mroej8lpzuh6jc

DD&T Process Overview

Figure 1 is a map of the process behind DD&T and connectivity to UCSF’s EHR APIs. These

steps are explained below.

(https://docs.google.com/drawings/d/15qOrHc3fDma90HxX8GbJIw_Vi9ckv50uhtdG2xQuJB0/

edit?ts=591b4875 is a link to a new version in progress)

https://docs.google.com/drawings/d/15qOrHc3fDma90HxX8GbJIw_Vi9ckv50uhtdG2xQuJB0/edit?ts=591b4875
https://docs.google.com/drawings/d/15qOrHc3fDma90HxX8GbJIw_Vi9ckv50uhtdG2xQuJB0/edit?ts=591b4875

Part 1: Moving From an Idea Into EHR Sandbox Testing

Step 1 - Develop an idea

At the very beginning, you will have an idea for an application that gets data from or pushes

data to the EHR —better medication reconciliation; a diabetes dashboard; etc. You will

articulate answers to questions such as, “What application is being built?”, “What is the

clinical need?”, and “what keeps me from doing this in the EHR?”. If you’re not faculty in one

of the standard series (Ladder, In Residence, Clinical X, HS Clinical, Adjunct) then you will need

to identify a sponsor who is.

Step 2 - Pre-Review: Propose your idea to a DD&T Informaticist
Next, you’ll propose your idea to a UCSF DD&T clinical informaticist (Raman Khanna, Aaron

Neinstein, Priyanka Agarwal, or Andrew Auerbach). One of the physicians in the group will

walk you through questions to consider and ensure that your proposal is not something that

can already be done within our EHR, suggesting alternatives if these already exist.

Step 3 - Complete DD&T committee Intake Form and security risk

assessment

DD&T’s Intake Form helps the DD&T assess your project on various axes—scale (how many

patients), scope (what does it do), and risk (what happens if it fails in some way), among

others. Your application also needs to pass a high-level screening security review (for

“inherent risk”).

Step 4 – 1st Review by Digital Diagnostics and Therapeutics (DD&T)

Committee
Your request will be reviewed by the DD&T Committee after you complete the Intake Form

and Security Assessment. If your request is approved, you will be able to move forward with

connecting to EHR APIs to “sandbox testing” of your app in the “ACE6” environment.

Included in this 1st DD&T Review are approvals from:

- UCSF Privacy Office

- Legal

- Risk

- Compliance

- UCSF ITA (Industry, Technology, & Alliances)

https://redcap.ucsf.edu/surveys/?s=F8YFHD3NDH
https://it.ucsf.edu/services/delphiis-risk-assessment-it-security

What criteria does DD&T Committee use during its 1st Review?

1. Is the external application functionality already performed by the EHR itself? If so, what

is the value added by this application?

2. Does the application respect core principles of the UCSF EHR, such as retaining ‘single

source of truth?’

3. Do the application’s clinical recommendations align with other UCSF Health standards

(e.g. medications on UCSF formulary)?

4. Does the use of the API align with other key UCSF Health pillars, as articulated in the

UCSF True North strategic plan?

5. Do the APIs you want to use already exist?

6. Is your app’s connection likely to be costly to maintain (e.g. how many times does it call

our EHR, for what information, and in domains that change frequently or otherwise)?

What is cost of maintenance?

7. Are you or your software partners capable of assuming the risks of connecting to and

handling Protected Health Information (PHI)?

a. Are your security procedures consistent with UCSF standards?

b. Can you secure PHI in transit and at rest?

c. If you’re using an external vendor, have they already or will they sign UCSF’s

Business Associates Agreement?

d. Are your partners (if any) in good standing as University of California (UC) vendor?

e. What assurances can you provide regarding safeguarding/auditing data?

8. Is this a read only application or a read & write?

9. If working with an outside vendor, what is the nature of the business relationship and

what are UCSF’s intellectual property interests in the project?

10. If working with an outside vendor, are they set up as an approved vendor in Epic’s App

Orchard?

Step 5 - Business Associates’ Agreement (BAA) & Contract

After you get approval from the DD&T Committee to test your app, you will simultaneously:

1. Get access to the ACE6 “sandbox” testing and development environment (see below)

2. Be asked that your company partner to sign a Business Associates Agreement. The BAA

confirms that the company will assume risk and indemnify UCSF for any PHI lost.

3. Be asked for the company partner to sign a contract regarding their work.

https://apporchard.epic.com/Developer
https://apporchard.epic.com/Developer

Step 6 - ACE6 Access & the “Developer Package”
At this point, you will be developing your application and you will receive the “developer

package”:

- Access to UCSF’s EHR sandbox testing environment (ACE6) as a clinical user (e.g. you can

log in)

- Access to the APIs connected to the ACE6 environment

- Access to API documentation on the Epic UserWeb

In ACE6, you can conduct testing to see if your application is working—if you change a

medication or add a new vital sign value, is your application able to successfully reflect this by

means of the EHR; etc. Demonstrating successful testing is necessary for gaining approvals to

move into the “live” Epic production environment.

Note also that in connecting to the APIs, one may be connecting either directly to the

Interconnect API, or to an API manager (“Wrapper”) built on a separate platform that calls the

IC API. UCSF reserves the right to change between the two, and require you to do so as well.

Part 2: Moving from “Sandbox” to the “Production Path”

Congratulations! You have moved your application beyond the planning stages, tested it, and

now think it would be a great idea to be able to use it in the production environment. Let’s

walk next through the steps involved in this second part of the process, which entails a higher

degree of scrutiny.

Why two separate steps and why are the requirements different?
EHR data can be difficult to manage and applications often fail to reach maturity for a variety

of reasons—loss of interest, validation not working as intended, poor usability for reasons

beyond the developer’s control (see below). We also owe it to our patients to be extra careful

because health applications are not like medications—there is usually no data from

randomized trials to prove which ones are effective and which ones are harmful. And the

consequences could be severe—imagine an application that incorrectly calculates a MELD

score and thus gives a patient hope that she/he might receive a liver (or worse, actually

misallocates a transplantable liver), or one that recommends insulin dose titrations ten times

larger than usual due to a glitch in ordering parameters.

As such, not all applications will move from testing to production. DD&T’s goal is to reduce the

barriers to testing and validating brilliant ideas, while maintaining a strict process for getting

these ideas into the EHR where they can help, or potentially harm, our patients.

Step 1 – Security Assessment – “Full Risk”

Once you have validated your code in the ACE6 testing environment, it will then be time to

undergo a security assessment for “full risk.” This assessment uses the same form as your

initial security review (“inherent risk”), but will be re-examined given the fact that PHI will now

exist in your application and will transit back and forth with our EHR.

Step 2 (as needed) - Committee on Human Research (CHR)

In certain cases, and particularly if the application is part of a research study, the

developers will need to complete a CHR (IRB) application and provide the approval

number.

Step 3 (as needed) - Care Technology Governance Committee (CTG)

If the application wishes to write data to EHR, is costly to implement or maintain, and/or

is accompanied by capital budget requests, the UCSF Care Technology Governance

Committee (CTG) will also need to review and approve your project.

https://it.ucsf.edu/services/delphiis-risk-assessment-it-security

Step 4 - Code Review (& Links within EHR)

Here, a developer from the Clinical Systems team—which is responsible for configuring our

EHR for local use, e.g. what is in your post-operative pain order set and how your neurology

note template behaves—will review the calls your application is making into the EHR.

Simultaneously, one of the Informaticists may review your application user interface (UX) with

you to confirm usability. The key idea here is to ensure the application is not creating

dangerous subroutines that could either impair the performance of production environments

or create backdoors for the stealing of data (not by you!), and to make sure that an application

that you think is eminently usable is, in fact, not going to get used because the number of

clicks that seem reasonable to you don’t fit with our experience of EHR applications that

actually get used. (See pitfalls below for famous examples.)

Launch From within EHR

If your application has reached this point, some questions that will naturally arise include:

1. How will a user get to my application?

2. When they do, will they need to log in?

3. When they log in, will the computer know which patient to bring up or will they have to

search again?

Luckily, the EHR increasingly has ways to address the above issues, and the simplest solution

will be a button in the EHR in a visible place (a column in your list; a button in your navigator;

or a link from the patient header) where clicking it launches your application, logged in based

on your EHR log in, with whichever patient you are viewing in the EHR. These button builds are

popular and useful but do take time and we need to ensure that the placement of a CIWA

management tool does not distract an ophthalmologist managing glaucoma. (This is why most

of the time the header will not be the right location.)

Step 5 - DD&T Final Review

At this point, you have been through the initial DD&T committee review, achieved “sign off”

through many UCSF regulatory and compliance steps, tested your application in ACE6, and had

it undergo code review. You are now ready for your application to undergo its final DD&T

review.

At the Final DD&T Review, your project’s evolution, testing data, and potential impact are

discussed and a plan is made to put it on the path to treating real patients in the EHR.

Part 3: Final EHR Deployment – Moving from “Sandbox” to

the “Production Path”

Step 1 – Perform “preproduction testing” of your application in APeX POC and

TST (EHR “proof of concept” and “test” environments)

Your application can now re-aim your APIs to the Epic POC and TST environments. While POC

is similar to ACE6, code from POC does sometimes get migrated directly to the production

environment, so we like to keep it as clean as possible. TST is like POC except it actually

connects to external test systems—so for example you can order a basic metabolic panel in

TST and it will actually create a requisition on the SUNQUEST system which a SUNQUEST

technicians can “fill”, to allow population of lab results into this environment through the

usual process. This can also serve as a real-world check on whether data is flowing how you

think it should and whether it is formatted in the ideal way.

Step 2 – Clinical Systems Change Control Board (CAB)

After you have gone through all of the above, the application will go to the Change Control

meeting (CAB) for approval.

Step 3 – APeX Production Deployment

Once the code has been approved at CAB, you and your developer will point the production

version of your application at the production APIs. Congratulations! You are now using your

application to help real live patients.

Step 4 - Post-Deployment Review
One month after production deployment, you and your developer will submit a report

regarding how much your application is being used, how often it is calling the EHR API, how it

is affecting clinical behavior or outcomes, and any additional lessons learned. We reserve the

right to request usage and access logs on demand, the same as our Privacy office demands of

our internal systems, in the event of a suspected privacy breach or litigation.

Development Pitfalls
Here are some of the pitfalls we have learned about over the years when developing these

sorts of applications.

1. Consider the browser. Many application developers start with the assumption that they

can do all of their development and testing in Chrome. DON’T BE THAT PERSON. Test

and validate in a variety of browsers. Previous projects we have worked on have either

lost time or required massive accessibility concessions and workarounds when this

factor was overlooked.

Not only is Chrome difficult to work with in the medical environment for all sorts of

cache-related reasons (have you ever opened a form in Chrome and noticed that the

previous user’s personal and financial information is auto-complete-saved to it,

probably entirely by mistake? Us, too!), it is not the browser that many EHRs themselves

use. This may change, but why set yourself up to fail?

Which brings us to:

2. Don’t assume that run of the mill code runs on the EHR browser. Even simple things

like type-ahead, when they rely on javascript, have been known to cause problems. The

power of being able to launch your application directly from the EHR needs to be

balanced against the limitations these browsers impose. In general, the simpler/more

accessible format beats the browser you need to open independently, no matter how

many bells and whistles the latter may have.

3. You must test as if you are a transitory user. This is harder to do than to say, but if you

are testing an application at your desk, there are things you will get used to that simply

will not be acceptable if you are accessing the same application at the medical center.

Example: previous applications we have worked on required 10-20 seconds to log into. If

you log in once a day, this may seem acceptable, but it won’t if you are using 5-10

computers each day with interruptions to return a page or step into a conference.

4. Make firewall and other network requests early. The UCSF network team is very busy.

Make sure that if you need a server address white listed, you do that at the beginning of

this whole process. Likewise, if you end up needing to stand up a brand new server,

request it very early. This way, after you finish your testing, you are not 3-4 months

behind as you await your production server to be spun up, loaded, and whitelisted.

5. Break the Glass

Appendix: Considerations

The ITA and Intellectual Property
Your work above, in addition to being good for patients, is fundamentally creative and will

often involve the creation of intellectual property (IP). If you are a UCSF employee, your IP is

owned by the UC Regents on behalf of the state of California (but under generous terms, more

so than most private employers), but if you are working with a developer you are not paying

this may get more complex. For this reason, the office of Innovation, Technology, and Alliances

attends our monthly meetings so they can help protect you and UCSF while ensuring your

developer also gets to keep their own IP. In general, code that is written by the company (that

you didn’t pay for on a contract basis) will be owned by them, but if you helped them develop

it by your knowledge of clinical situations, then you should own a share as well, and the ITA

can help you negotiate that up front. Custom APIs and buttons in the EHR built by the UCSF

Clinical Systems team are owned by UCSF.

Privacy, Regulatory, and Risk Management considerations
The presence of PHI outside of the EHR creates unique issues that need to be managed

appropriately and in accordance with UCOP BFB IS-3.

Privacy Considerations

UCSF patients have a right to privacy and to ensure that, at times of vulnerability, their data

are not viewed inappropriately. If inappropriate access does occur, they should have

confidence that responsible individuals will be appropriately disciplined, removed and, where

relevant, prosecuted.

To achieve the above, your health application will need to log its users’ activity on an

individual level, via date/timestamps of:

1. Access to the application

2. Access to patient lists

3. Access to specific patients

4. (where relevant) access to specific data elements within the patient

Importantly, these do NOT have to be stored in the UCSF EHR, but they should be available on

demand for remittance to internal auditors as well as to external agencies such as the office of

civil rights (OCR) if and as needed, even if the app is eventually turned off. (If the app is turned

off, you can provide a one-time dump of the log data to our committee as long as it is clear

http://policy.ucop.edu/doc/7000543/BFB-IS-3

who accessed what, e.g. use UCSF identifiers like employee id not identifiers internal to your

application). This log would ideally be in the same format as EHR’s ASCII user logs.

This is also the logic behind the post-go-live audit step above.

Accessing sensitive patient’s data

A special consideration at UCSF is the multiple layers of additional privacy protection UCSF

employs for a subset of patients—prisoners, some employees, and public personalities.

Because it is quite easy to open a chart by mistake—and thus to claim to have done so, or to

do so from someone else’s computer—UCSF has enacted EHR functionality whereby access to

this subset of patients’ data requires affirmation (and a re-entry of your password) that you do

indeed need access.

Your application will need to respect the rules around the same subset of patients. Luckily, our

EHR flags such patients in its APIs, and our test environment has a few such patients, so you

and your developer can test and validate your own sensitive patient subroutines. This is also

where the button concept in the EHR becomes so attractive—if someone is accessing your

application through the patient’s chart in the EHR, it means they have already confirmed they

need access, so your application can check this and just make note of it. From other parts of

your application, you will need to consider whether a user has already accessed sensitive

information and if not, show her/him a similar splash screen as the one in the EHR with similar

safeguards before she/he confirms access.

Compliance/Regulatory Considerations

One area you’ll need to think about also is scope of practice. Your app may make it

functionally possible for any user to do something that a doctor would ordinarily do (e.g. dose

heart failure medication or diagnose depression), but if that user is not actually a doctor then

this functional capability may still be legally impermissible without appropriate oversight. This

will be particularly important for applications needing R&W access.

Risk Management Considerations

Risk management will need to be kept apprised of all data, especially on 3 axes:

1. Does the external application constitute a portion of the legal medical record (LMR)

subject to a release of information request?

2. Is your application data available and known to UCSF lawyers in can it can help defend

the institution and providers against lawsuits?

3. Is the application creating expectations for example that data should have been viewed

in this alternate format but was not, and now providers are liable for content they did

not know existed? This might apply for example to a pilot in which an application posts a

warning that is never viewed because the provider it seeks to warn does not have access

to the application.

Fees and Level of Service
UCSF will charge fees for the above process as follows.

1. Vendors must pay $5,000 for the DD&T and security reviews and the Developer Packet.

2. Vendors must pay another $5,000 for the 2nd DD&T review, code Review, movement to

POC/TST, and CAB processes.

3. Vendors with commercial software will need to separately pay EHR for connecting to

the APIs.

4. These fees must be paid prior to the DD&T review steps as noted above, eg upon

submission of the request.

If you are developing the application yourself on UCSF infrastructure that you otherwise have

access to (e.g. your laptop), the fees above will be waived; however, you’ll need to undergo a

security review especially as and when you add a HIPAA-compliant server.

The above fees grant access to the basic package listed above and include ONLY a “do it

yourself” level of service. Any requests/questions that need to be answered cannot be

directed to either the help desk or to Clinical Systems; instead, you’ll need to separately open

a ticket with these teams and purchase blocks of support hours in increments of 10 hours at a

rate of $200/hour.

Glossary
DD&T = The Digital Diagnostics and Therapeutics Committee

BAA = Business Associates Agreement

ITA = the UCSF office of Innovation, Technology, and Alliances

PLR = the Privacy, Legal, and Risk Committee

CHR = Committee on Human Research

CTG = Committee on Technology Governance

ACE6 = Developer SandBox

POC/TST = Proof of Concept, Test EHR environments (production path)

CAB = Change control Board for the EHR

PRD = Production environment (EHR).

EHR = Electronic health record

UserWeb

App Orchard

IC API

DT = Developer team

PHI

